Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 31(3): 536-547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316879

RESUMO

During transcription-coupled DNA repair (TCR), RNA polymerase II (Pol II) transitions from a transcriptionally active state to an arrested state that allows for removal of DNA lesions. This transition requires site-specific ubiquitylation of Pol II by the CRL4CSA ubiquitin ligase, a process that is facilitated by ELOF1 in an unknown way. Using cryogenic electron microscopy, biochemical assays and cell biology approaches, we found that ELOF1 serves as an adaptor to stably position UVSSA and CRL4CSA on arrested Pol II, leading to ligase neddylation and activation of Pol II ubiquitylation. In the presence of ELOF1, a transcription factor IIS (TFIIS)-like element in UVSSA gets ordered and extends through the Pol II pore, thus preventing reactivation of Pol II by TFIIS. Our results provide the structural basis for Pol II ubiquitylation and inactivation in TCR.


Assuntos
RNA Polimerase II , Transcrição Gênica , RNA Polimerase II/metabolismo , 60562 , Reparo do DNA , DNA/metabolismo , Ubiquitinação , Ligases , Receptores de Antígenos de Linfócitos T
2.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108663

RESUMO

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Polimerase II/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
3.
Trends Cell Biol ; 31(5): 359-371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33685798

RESUMO

DNA lesions pose a major obstacle during gene transcription by RNA polymerase II (RNAPII) enzymes. The transcription-coupled DNA repair (TCR) pathway eliminates such DNA lesions. Inherited defects in TCR cause severe clinical syndromes, including Cockayne syndrome (CS). The molecular mechanism of TCR and the molecular origin of CS have long remained enigmatic. Here we explore new advances in our understanding of how TCR complexes assemble through cooperative interactions between repair factors stimulated by RNAPII ubiquitylation. Mounting evidence suggests that RNAPII ubiquitylation activates TCR complex assembly during repair and, in parallel, promotes processing and degradation of RNAPII to prevent prolonged stalling. The fate of stalled RNAPII is therefore emerging as a crucial link between TCR and associated human diseases.


Assuntos
Reparo do DNA/fisiologia , RNA Polimerase II/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , RNA Polimerase II/genética , Ubiquitinação
4.
Nat Commun ; 12(1): 1342, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637760

RESUMO

Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.


Assuntos
Dano ao DNA/fisiologia , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular , DNA/efeitos da radiação , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Mapas de Interação de Proteínas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Raios Ultravioleta
5.
Sci Rep ; 11(1): 3007, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542309

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.

7.
Nat Commun ; 11(1): 2104, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355176

RESUMO

The response to DNA damage-stalled RNA polymerase II (RNAPIIo) involves the assembly of the transcription-coupled repair (TCR) complex on actively transcribed strands. The function of the TCR proteins CSB, CSA and UVSSA and the manner in which the core DNA repair complex, including transcription factor IIH (TFIIH), is recruited are largely unknown. Here, we define the assembly mechanism of the TCR complex in human isogenic knockout cells. We show that TCR is initiated by RNAPIIo-bound CSB, which recruits CSA through a newly identified CSA-interaction motif (CIM). Once recruited, CSA facilitates the association of UVSSA with stalled RNAPIIo. Importantly, we find that UVSSA is the key factor that recruits the TFIIH complex in a manner that is stimulated by CSB and CSA. Together these findings identify a sequential and highly cooperative assembly mechanism of TCR proteins and reveal the mechanism for TFIIH recruitment to DNA damage-stalled RNAPIIo to initiate repair.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase II/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Reparo do DNA , Humanos , Transcrição Gênica , Raios Ultravioleta , Xenopus laevis
8.
Nucleic Acids Res ; 48(1): 231-248, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31722399

RESUMO

Cockayne Syndrome (CS) is a severe neurodegenerative and premature aging autosomal-recessive disease, caused by inherited defects in the CSA and CSB genes, leading to defects in transcription-coupled nucleotide excision repair (TC-NER) and consequently hypersensitivity to ultraviolet (UV) irradiation. TC-NER is initiated by lesion-stalled RNA polymerase II, which stabilizes the interaction with the SNF2/SWI2 ATPase CSB to facilitate recruitment of the CSA E3 Cullin ubiquitin ligase complex. However, the precise biochemical connections between CSA and CSB are unknown. The small ubiquitin-like modifier SUMO is important in the DNA damage response. We found that CSB, among an extensive set of other target proteins, is the most dynamically SUMOylated substrate in response to UV irradiation. Inhibiting SUMOylation reduced the accumulation of CSB at local sites of UV irradiation and reduced recovery of RNA synthesis. Interestingly, CSA is required for the efficient clearance of SUMOylated CSB. However, subsequent proteomic analysis of CSA-dependent ubiquitinated substrates revealed that CSA does not ubiquitinate CSB in a UV-dependent manner. Surprisingly, we found that CSA is required for the ubiquitination of the largest subunit of RNA polymerase II, RPB1. Combined, our results indicate that the CSA, CSB, RNA polymerase II triad is coordinated by ubiquitin and SUMO in response to UV irradiation. Furthermore, our work provides a resource of SUMO targets regulated in response to UV or ionizing radiation.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Raios Ultravioleta
9.
Nat Commun ; 9(1): 1040, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531219

RESUMO

Transcription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRLCSA). Despite its vital role in TC-NER, little is known about the regulation of the CRLCSA complex during TC-NER. Using conventional and cross-linking immunoprecipitations coupled to mass spectrometry, we uncover a stable interaction between CSA and the TRiC chaperonin. TRiC's binding to CSA ensures its stability and DDB1-dependent assembly into the CRLCSA complex. Consequently, loss of TRiC leads to mislocalization and depletion of CSA, as well as impaired transcription recovery following UV damage, suggesting defects in TC-NER. Furthermore, Cockayne syndrome (CS)-causing mutations in CSA lead to increased TRiC binding and a failure to compose the CRLCSA complex. Thus, we uncover CSA as a TRiC substrate and reveal that TRiC regulates CSA-dependent TC-NER and the development of CS.


Assuntos
Chaperonina com TCP-1/metabolismo , Dano ao DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Fatores de Transcrição/metabolismo , Raios Ultravioleta , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Chaperonina com TCP-1/genética , Síndrome de Cockayne/genética , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Humanos , Imunoprecipitação , Espectrometria de Massas , Microscopia de Fluorescência , Mutação/genética , Interferência de RNA , Fatores de Transcrição/genética , Transcrição Gênica/genética , Transcrição Gênica/efeitos da radiação
10.
PLoS One ; 11(11): e0167087, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27893852

RESUMO

BACKGROUND: Clinical trials to test safety and efficacy of drugs for patients with spinal muscular atrophy (SMA) are currently underway. Biomarkers that document treatment-induced effects are needed because disease progression in childhood forms of SMA is slow and clinical outcome measures may lack sensitivity to detect meaningful changes in motor function in the period of 1-2 years of follow-up during randomized clinical trials. OBJECTIVE: To determine and compare SMN protein and mRNA levels in two cell types (i.e. PBMCs and skin-derived fibroblasts) from patients with SMA types 1-4 and healthy controls in relation to clinical characteristics and SMN2 copy numbers. MATERIALS AND METHODS: We determined SMN1, SMN2-full length (SMN2-FL), SMN2-delta7 (SMN2-Δ7), GAPDH and 18S mRNA levels and SMN protein levels in blood and fibroblasts from a total of 150 patients with SMA and 293 healthy controls using qPCR and ELISA. We analyzed the association with clinical characteristics including disease severity and duration, and SMN2 copy number. RESULTS: SMN protein levels in PBMCs and fibroblasts were higher in controls than in patients with SMA (p<0.01). Stratification for SMA type did not show differences in SMN protein (p>0.1) or mRNA levels (p>0.05) in either cell type. SMN2 copy number was associated with SMN protein levels in fibroblasts (p = 0.01), but not in PBMCs (p = 0.06). Protein levels in PBMCs declined with age in patients (p<0.01) and controls (p<0.01)(power 1-beta = 0.7). Ratios of SMN2-Δ7/SMN2-FL showed a broad range, primarily explained by the variation in SMN2-Δ7 levels, even in patients with a comparable SMN2 copy number. Levels of SMN2 mRNA did not correlate with SMN2 copy number, SMA type or age in blood (p = 0.7) or fibroblasts (p = 0.09). Paired analysis between blood and fibroblasts did not show a correlation between the two different tissues with respect to the SMN protein or mRNA levels. CONCLUSIONS: SMN protein levels differ considerably between tissues and activity is age dependent in patients and controls. SMN protein levels in fibroblasts correlate with SMN2 copy number and have potential as a biomarker for disease severity.


Assuntos
Biomarcadores/análise , Fibroblastos/metabolismo , Atrofia Muscular Espinal/diagnóstico , RNA Mensageiro/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Variações do Número de Cópias de DNA/genética , Feminino , Fibroblastos/patologia , Seguimentos , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/genética , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Proteína 2 de Sobrevivência do Neurônio Motor/sangue , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...